

Ontario Grade 12 College Math Formula Sheet

Pythagorean Theorem

 $a^2 + b^2 = c^2$, where *c* is the length of the hypotenuse

Linear Relations

Slope: $m = \frac{y_{2-}y_1}{x_{2-}x_1}$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Trigonometry

$\sin \theta = \frac{opposite}{c}$	$\csc \theta = \frac{hypotenuse}{d}$	Sine Law
hypotenuse adjacent	$\sec \theta = \frac{opposite}{bypotenuse}$ $\sec \theta = \frac{hypotenuse}{adjacent}$	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
$\tan \theta = \frac{opposite}{adjacent}$	$\cot \theta = \frac{adjacent}{opposite}$	Cosine Law
aajacene		$a^2 = b^2 + c^2 - 2bc\cos(A)$

Area and Volume: for ALL calculations using π , <u>always use</u> $\pi = 3.14$

Area of a **circle** with radius *r*: $A = \pi r^2$ Circumference of a **circle** with radius r $C = 2\pi r$

Area of a **triangle** with base *b* and height *h*:

$$A = \frac{1}{2}bh$$

Volume of Prism:

V = area of base x height of the prism

Volume of **Pyramid**:

 $V = \frac{1}{3} \times$ (the volume of the enclosing prism)

Volume of **Cylinder** with height *h* and radius *r*:

 $V = \pi r^2 h$

Volume of **Sphere** with radius *r*:

$$V = \frac{4}{3}\pi r^3$$