

# Ontario Grade 10 Academic and Applied Math Formula Sheet

## **Pythagorean Theorem**

 $a^2 + b^2 = c^2$ , where *c* is the length of the hypotenuse

#### **Linear Relations**

Slope: 
$$m = \frac{y_{2-}y_1}{x_{2-}x_1}$$

#### **Quadratic Formula**

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

### Trigonometry

| $\sin\theta = \frac{opp}{hyp}$ | <u>Sine Law:</u>                                                        | <u>Cosine Law:</u>             |
|--------------------------------|-------------------------------------------------------------------------|--------------------------------|
| $\cos\theta = \frac{adj}{hyp}$ | $\frac{\sin A}{\sin A} = \frac{\sin B}{\sin A} = \frac{\sin C}{\sin A}$ | $a^2 = b^2 + c^2 - 2bc\cos(A)$ |
| $\tan\theta = \frac{opp}{adj}$ | a b c                                                                   |                                |

**Area and Volume:** for ALL calculations on the test using  $\pi$ , *always use*  $\pi = 3.14$ 

Circumference and Area of a circle with radius r

 $C = 2\pi r \qquad A = \pi r^2$ 

Area of a **triangle** with base *b* and height *h*:

$$A = \frac{1}{2}bh$$

Volume of **Prism**: V = area of base x height of the prism

Volume of Pyramid:

 $V = \frac{1}{2} \times$  (the volume of the enclosing prism)

Volume of **Cylinder** with height *h* and radius *r*:  $V = \pi r^2 h$ 

Volume of **Sphere** with radius *r*:

$$V = \frac{4}{3}\pi r^3$$

Surface Area of **Cylinder** with height *h* and radius *r*:  $SA = 2\pi rh + 2\pi r^2$ 

Surface Area of a **Cone** with radius r and slant height h:  $SA = \pi rs + \pi r^2$ 

Surface Area of **Sphere** with radius *r*:  $SA = A\pi r^2$ 

$$SA = 4\pi r$$